Conveying Systems
Inverted Tooth Chains
from Renold
Our inverted tooth chains transport and convey products, workpieces, and materials securely and reliably, whether processed or unprocessed, large or small, light or heavy, bulky or round. Renold inverted tooth conveyor chains guarantee success in every area.
Inverted tooth chains from Renold
The safe and profitable solution for conveying different goods

The flexible solution for your conveying applications
The technical variety of inverted tooth conveyor chains covers a wide range of applications. Whether for heavy-duty, robust operation, or to convey parts with small or large dimensions, processed or unprocessed workpieces, or even fragile items: An inverted tooth chain is the profitable solution for all types of use.
The variable construction of an inverted tooth chain guarantees the optimal execution of the respective conveying task. Thanks to the multitude of available link plate forms, in many cases it’s possible to fix the goods to be conveyed right onto the inverted tooth chain – without additional mechanisms. Various pitches, link plate forms, and materials are available in order to make the right chain selection in terms of weight and ambient conditions.

- Space-saving and variable in type, design, and width
- Slip-free and silent
- Functional reliability and extended service-life
- Robustness, simple assembly/disassembly

By significantly lengthening your replacement intervals, Renold can also reduce your costs when it comes to the purchase of spare parts. Substantially extended equipment life and significantly reduced downtime – Renold inverted tooth conveyor chains assure cost-effective production.
A distinguished conveying system
Inverted tooth chains for conveying and linkage systems provide optimum conveyor-belt systems.

Renold has extensive experience in this area. Economical, user-friendly solutions are the main priority for our conveying technology, which is unsurpassed in terms of service life and availability.

Inverted tooth conveyor chains from Renold work slip-free and bring every part to the right location at the prescribed time. Depending on their type and shape, the workpieces sit either directly on the chains, on pallets, or on carrier devices that have been specially integrated into the chain. More than 500 different driver link plates are also available to help accomplish this task.

If required, additional link plates for workpiece transport can easily be attached to the conveyor. Depending on their type and shape, products are transported directly on the inverted tooth chain that are designed according to the specific requirements. For special needs, inverted tooth chains are also available with smoothed surfaces. With the help of product carriers or pallets, bulky items are brought to the required position by two narrow inverted tooth chains. The inverted tooth chain features smooth and even running, a special advantage in case of difficult geometry, e.g. a high center of gravity.

Space-saving and variable in both form and width due to the chain’s lamellar construction
Operate slip-free and quietly with the help of involute-toothings
Ensure functional reliability and a long service life with low wear and tear
Provide versatility through application-specific design
Promote large bearing surfaces and low surface pressure through special link plate forms
Use premium materials for high resistance to temperature and ambient conditions
Offer easy assembly and disassembly due to the chain’s specific design
Reduce wear on transported goods through top-quality surfaces
Feature interlocking driving through link plate forms or special drivers

Avoidable problems of various conveyor systems with ...

... belts
- Damage due to sharp-edged parts
- High degree of wear
- Lack of thermal and chemical resistance
- Difficult to repair
- Complex assembly
- Large roller diameter
- Large in width
- High pre-load forces

... roller conveyors
- Loud running noises
- Low accuracy
- Changing conveyance height
- Many individual drives
- Lack of interlocking driving
- Limited accessibility
- Small bearing surface
- Missing design variants

... roller chains
- Limited width adjustment
- Small bearing surface
- High surface pressure
- High wear with accumulation operation
- No immediate driving with accumulation roller chains
- Uneven or high elongation
- Unbalanced running
- Large wheel diameters

Inverted tooth chains from Renold – maximum versatility as a modular system.
Advantages

Inverted tooth conveyer chains

New link plate forms for the extended pitch version TRILEG – inverted tooth conveyer chains

- Reduced vertical wear caused by abrasion on the teeth across the entire chain
- 30% reduction in pressure and sliding loads
- Advantage of lower chain elongation for inverted tooth conveyer chains with extended pitch due to minimizing the number of joints is not impaired

The axle pivots in Renold inverted tooth conveyer chains are laser-welded to the outer link plates

- Smooth contact surfaces on both sides. Since the rivet heads no longer protrude, inverted tooth conveyer chains may be routed directly along the guide rails
- Increase in service life. What doesn’t protrude cannot be damaged!
- Pivot pins do not drift laterally
- Substantially larger side surfaces without sharp-edged rivet heads prevent side wear on tooth chains and guide rails
- These new inverted tooth chains are fully compatible with existing models. No modifications or sprocket reworking is necessary

Length behavior of inverted tooth chains, one- and two-pins versions

Renold joint systems
All one-pin systems experience up to three times as much elongation due to sliding friction. This leads to increased pivot wear. Renold 2-pin rolling pivot joint with its hardened pivot and axle pivots creates only rolling friction and thus substantially reduces wear.
Design characteristics
Varying pitches, constructions, materials and models

Inverted tooth chains with a 2-part rolling pivot joint constitute the inverted tooth conveyor chains with the least amount of wear due to elongation. Thanks to optimized link plate forms, they also provide an enlarged sliding area.

All models are available in the following standard variations

- Tight link construction
- Loose link construction with spacer disks or bushings

Additional versions for special applications

- Inverted tooth chains with smoothed backs for fragile surfaces, for use in accumulation operation and for improved stability (smoothed on both sides upon request)
- Inverted tooth chains made from stainless steel for demanding ambient conditions
- Inverted tooth chains with galvanized or nickel-plated links
- Inverted tooth chains with drivers or special link plates to fit individual conveying needs

Extended pitch 2 x 1/2” TRILEG

- Less elongation due to wear
- Less vertical wear in the TRILEG version
- Reduced weight allows for easier assembly and less drive energy
- Improved oil and chip removal

Regular pitch 1/2”

- Can be used for smaller parts
- Universally applicable, especially for smaller return diameters
- Compact, durable, and stable under load

Low model 1/2”

- Extremely large bearing area on the tooth side
- Robust version with a profile pin
- Reduced link height
- Special version without rigid backing available
Types of standard guides
We have all types of guides in our programme

Inverted tooth chains are usually centered on the chain wheel with unmeshed link plates, also known as guide plates. In general, all types of guides have their advantages, and in some circumstances, the guide plates in inverted tooth conveyor chains may be dispensed with completely. Please ask us for more information!

It goes without saying that all of our standard guide types are available at the same conditions. For all external guide variants, please indicate the meshing width!

External guide
- The inverted tooth chain displays a row of guide plates which enclose the cogs and center the chain
- A completely homogenous link plate formation in the chain’s middle is possible
- Adjustment to wheel width necessary

Internal guide
- The middle of the inverted tooth chain contains a row of guide plates which run into a guideway in the wheel and thus center the chain
- All-purpose, independent of the existing wheel width

A brief overview of the variety of standard designs

<table>
<thead>
<tr>
<th>End version</th>
<th>Link plate type</th>
<th>Construction</th>
<th>Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverted tooth conveyor chains in machine-specific widths, lengths, material type and with special modifications</td>
<td>Extended pitch TRILEG with two-pin system</td>
<td>tight</td>
<td>internal, external</td>
</tr>
<tr>
<td></td>
<td>Regular pitch with two-pin system</td>
<td>loose</td>
<td>internal, external</td>
</tr>
<tr>
<td></td>
<td>Low model with one-pin system</td>
<td>tight</td>
<td>internal, external</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loose</td>
<td>internal, external</td>
</tr>
</tbody>
</table>
The correct design of inverted tooth chains

Traction and effective power requirement, chain width and required surface length

The right layout is a prerequisite for a long service life

The chain width is measured according to the traction necessary to overcome friction. This friction may be doubled in accumulation zones. The collapse load of an inverted tooth chain should also be considered when extremely heavy weight loads are involved. In case of doubt, please send us your layout. We’re happy to assist you!

The actual power requirement can also be determined for a specified conveying speed. In order to prevent an overload caused by oversized motors, the final chain selection is recommended based on the existing drive torque.

Traction and effective power requirement:

\[
F_1 = 9.81 \cdot G \cdot \mu \cdot N_R
\]

\[
P_{\text{eff}} = F_1 \cdot v \cdot 10^{-3}
\]

\[
F_2 = \frac{2 \cdot M_d}{d_t} \cdot 10^3 \geq F_1
\]

\[F_1 = \text{traction [N]}\]

\[G = \text{conveyed weight [kg]}\]

\[\mu = \text{friction factor; dry sliding friction up to 0.15 adhesion/synthetics up to 0.4}\]

\[N_R = \text{number of normal friction surface pairs; } N_R = 1\]

\[\text{loaded chains in accumulation zones; } N_R = 2\]

\[P_{\text{eff}} = \text{effective power requirement [kW]}\]

\[v = \text{conveying speed [m/s]}\]

\[M_d = \text{torque [Nm]}\]

\[d_t = \text{tip diameter [mm]}\]

Explanations:

The chains slide along rails. Metal or synthetic materials are customarily used as wear surfaces and should be accounted for when determining the value \(\mu\). A distortion of the bearing area (e.g., placed under pressure during longer downtimes) could result in an increased breaking torque \((\mu = 0.4)\) when synthetic materials are involved. (See page 18 for more details on slide rails.)

Chain width:

The selection of an inverted tooth conveyor chain is based on the calculation of the chain’s width, which follows the formula:

\[
b_a = \frac{F_{12} \cdot y}{10 \cdot p \cdot N_a}
\]

\[b_a = \text{chain width [mm]}\]

\[F_{12} = \text{traction force [N]}\]

\[p = \text{chain pitch 12.7 [mm]*}\]

\[N_a = \text{number of chains}\]

\[y = \text{length factor for}\]

\[A = 5 \text{ m and above according to the formula:}\]

\[y = \text{1.0 } \cdot \text{ \{A }-\text{ 5\} } \cdot \text{0.06 with}\]

\[A = \text{shaft distance [m]}\]

Max. value 2.0!

*Must also be used for an extended pitch of 2 x 1/2".

Explanations:

Factor \(y\): Extra lengths are necessary to prevent the “stick-slip” effect on longer stretches, which may occur as a jerky slide at the end of the conveyor. The calculated width should first be rounded up to an existing working width \(b_a\) (taken from the table), depending on type and pitch. For laser-welded inverted tooth conveyor chains, the total width \(b_e\) corresponds to the working width.

Important: The calculated chain width only applies to chains with a tight link plate construction. If choosing an inverted tooth conveyor chain with a loose construction, e.g., with disks or bushings, please ask for a consultation first. In general, special link plates do not affect the width and are described in further detail on page 15. The determined working width \(b_a\) must be doubled for rustproof inverted tooth conveyor chains.
Calculation Inverted tooth conveyor chains

Selecting sliding materials

The permissible specific pressure load plays a key role when it comes to selecting sliding materials. Ambient conditions such as temperature, humidity, dust, etc. greatly influence this choice.

The following materials are used:
- PE and PA synthentic materials similar to DIN 7728
- Spring band steel 55 or 65 Si7 or C75S (hardened and tempered)

For these most frequently used or recommended materials, the required bearing length is roughly determined in the following. It depends on the inverted tooth chain type and may not exceed the permissible pressure load that has been determined for the working width.
2 x 1/2” with two-pin system

<table>
<thead>
<tr>
<th>Designation</th>
<th>Max. width b</th>
<th>Weight [kg/m]</th>
<th>Designation</th>
<th>Max. working width b</th>
<th>Max. total width b</th>
<th>Weight [kg/m]</th>
<th>Nom. width</th>
<th>Wheel width b</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT-12-SL</td>
<td>14.5</td>
<td>0.7</td>
<td>KLSS 312 A</td>
<td>9.4</td>
<td>18.1</td>
<td>0.6</td>
<td>12</td>
<td>9.5/8.5</td>
</tr>
<tr>
<td>TT-15-SL</td>
<td>18.6</td>
<td>0.9</td>
<td>KLSS 315 A</td>
<td>12.5</td>
<td>21.3</td>
<td>0.7</td>
<td>15</td>
<td>13.5/11.5</td>
</tr>
<tr>
<td>TT-20-SL</td>
<td>22.7</td>
<td>1.1</td>
<td>KLSS 320 A</td>
<td>18.8</td>
<td>27.5</td>
<td>0.9</td>
<td>20</td>
<td>17.5</td>
</tr>
<tr>
<td>TT-25-CL</td>
<td>26.8</td>
<td>1.2</td>
<td>KLSS 325</td>
<td>26.6</td>
<td>32.2</td>
<td>1.1</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>TT-30-CL</td>
<td>31.0</td>
<td>1.4</td>
<td>KLSS 330</td>
<td>29.7</td>
<td>35.3</td>
<td>1.2</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>TT-35-CL</td>
<td>35.1</td>
<td>1.6</td>
<td>KLSS 335</td>
<td>36.0</td>
<td>41.6</td>
<td>1.4</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>TT-40-CL</td>
<td>39.2</td>
<td>1.8</td>
<td>KLSS 340</td>
<td>42.3</td>
<td>47.9</td>
<td>1.7</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>TT-45-CL</td>
<td>43.4</td>
<td>2.0</td>
<td>KLSS 345</td>
<td>45.4</td>
<td>51.0</td>
<td>1.8</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>TT-50-CL</td>
<td>51.6</td>
<td>2.3</td>
<td>KLSS 350</td>
<td>51.6</td>
<td>57.2</td>
<td>2.0</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>TT-55-CL</td>
<td>55.8</td>
<td>2.5</td>
<td>KLSS 355</td>
<td>54.8</td>
<td>60.4</td>
<td>2.2</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>TT-60-CL</td>
<td>59.9</td>
<td>2.7</td>
<td>KLSS 360</td>
<td>61.0</td>
<td>66.6</td>
<td>2.4</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>TT-65-CL</td>
<td>64.0</td>
<td>2.9</td>
<td>KLSS 365</td>
<td>64.2</td>
<td>69.8</td>
<td>2.5</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>TT-70-CL</td>
<td>68.1</td>
<td>3.1</td>
<td>KLSS 370</td>
<td>70.4</td>
<td>76.0</td>
<td>2.8</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>TT-75-CL</td>
<td>76.4</td>
<td>3.4</td>
<td>KLSS 375</td>
<td>76.7</td>
<td>82.3</td>
<td>3.0</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>TT-80-CL</td>
<td>80.5</td>
<td>3.6</td>
<td>KLSS 380</td>
<td>79.8</td>
<td>85.4</td>
<td>3.1</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>TT-85-CL</td>
<td>84.7</td>
<td>3.8</td>
<td>KLSS 385</td>
<td>86.1</td>
<td>91.7</td>
<td>3.4</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>TT-90-CL</td>
<td>88.8</td>
<td>4.1</td>
<td>KLSS 390</td>
<td>89.2</td>
<td>94.8</td>
<td>3.5</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>TT-95-CL</td>
<td>97.1</td>
<td>4.3</td>
<td>KLSS 395</td>
<td>95.5</td>
<td>101.1</td>
<td>3.7</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>TT-100-CL</td>
<td>101.2</td>
<td>4.5</td>
<td>KLSS 3100</td>
<td>101.7</td>
<td>107.3</td>
<td>4.0</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>TT-115-CL</td>
<td>117.7</td>
<td>5.2</td>
<td>KLSS 3115</td>
<td>114.2</td>
<td>119.8</td>
<td>4.4</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>TT-125-CL</td>
<td>126.0</td>
<td>5.6</td>
<td>KLSS 3125</td>
<td>126.8</td>
<td>132.4</td>
<td>4.9</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>TT-140-CL</td>
<td>138.4</td>
<td>6.2</td>
<td>KLSS 3140</td>
<td>139.3</td>
<td>144.9</td>
<td>5.4</td>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>TT-150-CL</td>
<td>150.7</td>
<td>6.7</td>
<td>KLSS 3150</td>
<td>151.8</td>
<td>157.4</td>
<td>5.9</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>TT-175-CL</td>
<td>175.5</td>
<td>7.8</td>
<td>KLSS 3175</td>
<td>176.8</td>
<td>182.4</td>
<td>6.8</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>TT-200-CL</td>
<td>200.3</td>
<td>8.9</td>
<td>KLSS 3200</td>
<td>201.9</td>
<td>207.5</td>
<td>7.8</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>TT-250-CL</td>
<td>249.9</td>
<td>11.1</td>
<td>KLSS 3250</td>
<td>252.0</td>
<td>257.6</td>
<td>9.7</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>TT-300-CL</td>
<td>299.4</td>
<td>13.3</td>
<td>KLSS 3300</td>
<td>302.0</td>
<td>307.6</td>
<td>11.7</td>
<td>300</td>
<td>305</td>
</tr>
</tbody>
</table>

Measurements are in millimeters – for sprocket specifications, please see pages 16 and 17.

Modifications:
- Loose construction with spacer disks or spacer bushings
- With smoothed surface or smooth on both sides
- Slip-smoothed
- Designation of driver plates
- Additional widths available upon request

Use only even link numbers. Number of links equals number of pitches. The manufacturing tolerance for the working width and total width is ±1%.

Note: Inverted tooth chains are delivered with a riveted closure. When using split pin fasteners, bear in mind the protruding pin head on one side.
1/2” with two-pin system

<table>
<thead>
<tr>
<th>Laser-welded – 2 mm link plates</th>
<th>Riveted – 1.5 mm link plates</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Max. width b₁</td>
<td>Weight [kg/m]</td>
</tr>
<tr>
<td>RT-12-SL</td>
<td>14.5</td>
<td>0.9</td>
</tr>
<tr>
<td>RT-15-SL</td>
<td>18.6</td>
<td>1.1</td>
</tr>
<tr>
<td>RT-20-SL</td>
<td>22.7</td>
<td>1.4</td>
</tr>
<tr>
<td>RT-25-CL</td>
<td>26.8</td>
<td>1.6</td>
</tr>
<tr>
<td>RT-30-CL</td>
<td>31.0</td>
<td>1.9</td>
</tr>
<tr>
<td>RT-35-CL</td>
<td>35.1</td>
<td>2.1</td>
</tr>
<tr>
<td>RT-40-CL</td>
<td>39.2</td>
<td>2.4</td>
</tr>
<tr>
<td>RT-45-CL</td>
<td>43.4</td>
<td>2.6</td>
</tr>
<tr>
<td>RT-50-CL</td>
<td>51.6</td>
<td>3.1</td>
</tr>
<tr>
<td>RT-55-CL</td>
<td>55.8</td>
<td>3.3</td>
</tr>
<tr>
<td>RT-60-CL</td>
<td>59.9</td>
<td>3.6</td>
</tr>
<tr>
<td>RT-65-CL</td>
<td>64.0</td>
<td>3.8</td>
</tr>
<tr>
<td>RT-70-CL</td>
<td>68.1</td>
<td>4.1</td>
</tr>
<tr>
<td>RT-75-CL</td>
<td>76.4</td>
<td>4.5</td>
</tr>
<tr>
<td>RT-80-CL</td>
<td>80.5</td>
<td>4.7</td>
</tr>
<tr>
<td>RT-85-CL</td>
<td>84.7</td>
<td>5.0</td>
</tr>
<tr>
<td>RT-90-CL</td>
<td>88.8</td>
<td>5.4</td>
</tr>
<tr>
<td>RT-95-CL</td>
<td>97.1</td>
<td>5.7</td>
</tr>
<tr>
<td>RT-100-CL</td>
<td>101.2</td>
<td>5.9</td>
</tr>
<tr>
<td>RT-115-CL</td>
<td>117.7</td>
<td>6.9</td>
</tr>
<tr>
<td>RT-125-CL</td>
<td>126.0</td>
<td>7.4</td>
</tr>
<tr>
<td>RT-140-CL</td>
<td>138.4</td>
<td>8.1</td>
</tr>
<tr>
<td>RT-150-CL</td>
<td>150.7</td>
<td>8.8</td>
</tr>
<tr>
<td>RT-175-CL</td>
<td>175.5</td>
<td>10.3</td>
</tr>
<tr>
<td>RT-200-CL</td>
<td>200.3</td>
<td>11.7</td>
</tr>
<tr>
<td>RT-250-CL</td>
<td>249.9</td>
<td>14.6</td>
</tr>
<tr>
<td>RT-300-CL</td>
<td>299.4</td>
<td>17.4</td>
</tr>
</tbody>
</table>

Measurements are in millimeters – for sprocket specifications, please see pages 16 and 17.

Modifications:
- ■ Loose construction with spacer disks or spacer bushings
- ■ With smoothed surface or smooth on both sides
- ■ Slip-smoothed
- ■ Integration of driver plates
- ■ Additional widths available upon request

Use only even link numbers. Number of links equals number of pitches. The manufacturing tolerance for the working width and total width is -1%.

Note: Inverted tooth chains are delivered with a riveted closure. When using split pin fasteners, bear in mind the protruding pin head on one side.
1/2” with one-pin system

<table>
<thead>
<tr>
<th>Designation</th>
<th>Max. working width b</th>
<th>Max. total width b</th>
<th>Weight (kg/m)</th>
<th>Designation</th>
<th>Max. working width b</th>
<th>Max. total width b</th>
<th>Weight (kg/m)</th>
<th>Nom. width</th>
<th>Wheel width b</th>
</tr>
</thead>
<tbody>
<tr>
<td>KT 312 A</td>
<td>9.4</td>
<td>15.1</td>
<td>0.7</td>
<td>RTD 312 A</td>
<td>9.4</td>
<td>18.5</td>
<td>1.2</td>
<td>12</td>
<td>8.5</td>
</tr>
<tr>
<td>KT 315 A</td>
<td>12.5</td>
<td>18.3</td>
<td>0.9</td>
<td>RTD 315 A</td>
<td>12.5</td>
<td>21.7</td>
<td>1.4</td>
<td>15</td>
<td>11.5</td>
</tr>
<tr>
<td>KT 320 A</td>
<td>17.2</td>
<td>22.9</td>
<td>1.1</td>
<td>RTD 320 A</td>
<td>17.2</td>
<td>26.3</td>
<td>1.7</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>KT 325</td>
<td>26.6</td>
<td>29.2</td>
<td>1.1</td>
<td>RTD 325</td>
<td>26.6</td>
<td>32.6</td>
<td>2.0</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>KT 330</td>
<td>29.7</td>
<td>32.3</td>
<td>1.6</td>
<td>RTD 330</td>
<td>29.7</td>
<td>35.7</td>
<td>2.2</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>KT 335</td>
<td>36.1</td>
<td>38.6</td>
<td>1.9</td>
<td>RTD 335</td>
<td>36.1</td>
<td>42</td>
<td>2.6</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>KT 340</td>
<td>42.3</td>
<td>44.9</td>
<td>2.2</td>
<td>RTD 340</td>
<td>42.3</td>
<td>48.3</td>
<td>2.9</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>KT 345</td>
<td>45.4</td>
<td>48</td>
<td>2.3</td>
<td>RTD 345</td>
<td>45.4</td>
<td>51.4</td>
<td>3.1</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>KT 350</td>
<td>51.6</td>
<td>54.2</td>
<td>2.7</td>
<td>RTD 350</td>
<td>51.6</td>
<td>57.6</td>
<td>3.5</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>KT 355</td>
<td>54.8</td>
<td>57.4</td>
<td>2.8</td>
<td>RTD 355</td>
<td>54.8</td>
<td>60.8</td>
<td>3.7</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>KT 360</td>
<td>61</td>
<td>63.6</td>
<td>3.1</td>
<td>RTD 360</td>
<td>61</td>
<td>67</td>
<td>4.0</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>KT 365</td>
<td>67.3</td>
<td>69.9</td>
<td>3.4</td>
<td>RTD 365</td>
<td>67.3</td>
<td>73.3</td>
<td>4.4</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>KT 370</td>
<td>70.5</td>
<td>73.1</td>
<td>3.6</td>
<td>RTD 370</td>
<td>70.5</td>
<td>76.5</td>
<td>4.6</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>KT 375</td>
<td>75.1</td>
<td>77.7</td>
<td>3.8</td>
<td>RTD 375</td>
<td>75.1</td>
<td>81.1</td>
<td>4.8</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>KT 380</td>
<td>79.8</td>
<td>82.4</td>
<td>4.1</td>
<td>RTD 380</td>
<td>79.8</td>
<td>85.8</td>
<td>5.1</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>KT 385</td>
<td>86.1</td>
<td>88.7</td>
<td>4.4</td>
<td>RTD 385</td>
<td>86.1</td>
<td>92.1</td>
<td>5.5</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>KT 390</td>
<td>89.2</td>
<td>91.8</td>
<td>4.5</td>
<td>RTD 390</td>
<td>89.1</td>
<td>95.1</td>
<td>5.7</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>KT 395</td>
<td>95.5</td>
<td>98.1</td>
<td>4.9</td>
<td>RTD 395</td>
<td>95.5</td>
<td>101.5</td>
<td>6.1</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>KT 3100</td>
<td>100.2</td>
<td>102.8</td>
<td>5.1</td>
<td>RTD 3100</td>
<td>100.2</td>
<td>106.2</td>
<td>6.2</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>KT 3115</td>
<td>114.3</td>
<td>116.9</td>
<td>5.8</td>
<td>RTD 3115</td>
<td>114.3</td>
<td>120.3</td>
<td>7.2</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>KT 3125</td>
<td>123.6</td>
<td>126.2</td>
<td>6.3</td>
<td>RTD 3125</td>
<td>123.6</td>
<td>129.6</td>
<td>7.7</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>KT 3140</td>
<td>139.3</td>
<td>141.9</td>
<td>7.0</td>
<td>RTD 3140</td>
<td>139.3</td>
<td>145.3</td>
<td>8.6</td>
<td>140</td>
<td>145</td>
</tr>
<tr>
<td>KT 3150</td>
<td>148.7</td>
<td>151.3</td>
<td>7.5</td>
<td>RTD 3150</td>
<td>148.7</td>
<td>154.7</td>
<td>9.2</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>KT 3175</td>
<td>173.7</td>
<td>176.3</td>
<td>8.8</td>
<td>RTD 3175</td>
<td>173.7</td>
<td>179.7</td>
<td>10.6</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>KT 3200</td>
<td>198.8</td>
<td>201.4</td>
<td>10.0</td>
<td>RTD 3200</td>
<td>198.8</td>
<td>204.8</td>
<td>12.1</td>
<td>200</td>
<td>205</td>
</tr>
<tr>
<td>KT 3250</td>
<td>248.8</td>
<td>251.4</td>
<td>12.6</td>
<td>RTD 3250</td>
<td>248.8</td>
<td>254.8</td>
<td>15.0</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>KT 3300</td>
<td>298.9</td>
<td>301.5</td>
<td>15.0</td>
<td>RTD 3300</td>
<td>298.9</td>
<td>304.9</td>
<td>18.1</td>
<td>300</td>
<td>305</td>
</tr>
</tbody>
</table>

Measurements are in millimeters – for sprocket specifications, please see pages 16 and 17.

Modifications:
- Loose construction with spacer disks or spacer bushings
- Slip-smoothed (Applies only to low model)
- With smoothed surface or smooth on both sides (Applies only to low model)
- Integration of driver plates
- Additional widths available upon request

Use only even link numbers. Number of links equals number of pitches. The manufacturing tolerance for the working width and total width is ±3%.

Note: Inverted tooth chains are delivered with a riveted closure. When using split pin fasteners, bear in mind the protruding pin head on one side.
1” with one-pin/two-pin system

For especially heavy operation, inverted tooth conveyor chains with 1” pitches are available: type LCC with a low construction and type KT 6..

Due to its robust link geometry, the LCC type is especially well suited for greater widths and its bending capability over the chain back is almost unlimited (no rigid backing).

Type KT 6.. differs from other 1” drive tooth chains in that the link plate backs as well as the teeth have been leveled. As a result, these link plate forms provide the best conditions for transporting heavy workpieces together with the especially low-wear rolling pivot joint. This version also acts as a friction drive for the precise synchronization of sheet glass transfer rolls.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Max. working width (b_a)</th>
<th>Max. total width (b_g)</th>
<th>Weight (\text{kg/m})</th>
<th>Nom. width</th>
<th>Wheel width b</th>
<th>Designation</th>
<th>Max. working width (b_a)</th>
<th>Max. total width (b_g)</th>
<th>Weight (\text{kg/m})</th>
<th>Nom. width</th>
<th>Wheel width b</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCC 6200</td>
<td>198</td>
<td>206</td>
<td>10.0</td>
<td>200</td>
<td>210</td>
<td>KT 630</td>
<td>279</td>
<td>35.9</td>
<td>3.4</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>LCC 6250</td>
<td>247</td>
<td>255</td>
<td>12.4</td>
<td>250</td>
<td>260</td>
<td>KT 640</td>
<td>40.2</td>
<td>48.2</td>
<td>4.7</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>LCC 6300</td>
<td>302</td>
<td>310</td>
<td>15.2</td>
<td>300</td>
<td>310</td>
<td>KT 650</td>
<td>52.6</td>
<td>60.6</td>
<td>6.1</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>LCC 6350</td>
<td>351</td>
<td>359</td>
<td>17.6</td>
<td>350</td>
<td>360</td>
<td>KT 675</td>
<td>77.4</td>
<td>85.4</td>
<td>8.8</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>LCC 6400</td>
<td>400</td>
<td>408</td>
<td>20.1</td>
<td>400</td>
<td>410</td>
<td>KT 6100</td>
<td>102.1</td>
<td>110.1</td>
<td>11.5</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>LCC 6450</td>
<td>449</td>
<td>457</td>
<td>22.5</td>
<td>450</td>
<td>460</td>
<td>KT 6125</td>
<td>126.9</td>
<td>134.9</td>
<td>14.2</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>LCC 6500</td>
<td>497</td>
<td>505</td>
<td>25.0</td>
<td>500</td>
<td>510</td>
<td>KT 6150</td>
<td>151.7</td>
<td>159.7</td>
<td>17.3</td>
<td>150</td>
<td>155</td>
</tr>
</tbody>
</table>

Measurements are in millimeters – for sprocket specifications, please see pages 16 and 17.

Modifications: ■ Loose construction with spacer disks ■ With smoothed surface or smooth on both sides ■ Integration of driver plates or milled driver blocks ■ Additional widths available upon request

Use only even link numbers. Number of links equals number of pitches. The manufacturing tolerance for the working width and total width is ±2%.

Note: Inverted tooth chains are delivered with a riveted closure. When using split pin fasteners, bear in mind the protruding pin head on one side.
Order codes

Our system for each easy and correct order code of your individual conveyor tooth chain

Order codes for 2 mm link plate thickness

1. Link plate form
 - R = regular pitch 1/2" tight
 - E = extended pitch 2 x 1/2"
 - T = TRILEG Version 2 x 1/2"

2. Construction
 - T = tight
 - S = spacer disks
 - B = bushings
 - C = cleaning disks

3. Nom. width

4. Guide type
 - C = internal guide
 - S = external guide
 - M = multiple external guide
 - W = without guide

5. Closure type
 - R = riveted
 - L = laser-welded
 - D = directly riveted

Order codes for 1.5 mm link plate thickness

1. Version
 - KTSS = regular pitch 1/2" tight
 - KTS = regular pitch 1/2" with spacer disks
 - KTB = regular pitch 1/2" with bushings
 - KLSS = extended pitch 2 x 1/2" tight
 - KLS = extended pitch 2 x 1/2" with spacer disks
 - KLB = extended pitch 2 x 1/2" with bushings
 - KT = low model 1/2" tight
 - RTD = regular pitch 1/2" stainless steel tight
 - RTS = regular pitch 1/2" stainless steel with spacer disks
 - RTB = regular pitch 1/2" stainless steel with bushings

2. Nom. width

4. Guide type
 - Optional: A = external guide

3. Closure type

The standard inverted tooth chains contained in the chart present a selection of our product range. Laser-welded inverted tooth conveyor chains include two additional rivet closures for servicing.

If not explicitly stated, all inverted tooth chains – with the exception of the low model which is riveted directly – are manufactured with riveted disks.

Different possible chain designs

- Ridged surfaces for slip-free wood transport
- Precision plate chain mounted on an inverted tooth chain base
- Drag chain to couple transport trolleys
- Link plate package with integrated longitudinal profile
- Cycle line with massive driver blocks
- Stable driver coupling
- Driver link plates for cross-bars
- Inverted tooth chain in mirrored pairs for packaging lines
Specially designed inverted tooth chains
We are used to the unusual

Special link plates further expand the area of inverted tooth chain applications.

Various possibilities exist:
- Special inverted tooth chains made entirely from special link plates, e.g. ring or forked plates to take up cross-bars or link plates with ridged backs for woo transport
- Special link plates only at certain positions, e.g. for fastening mold halves on packaging lines or, on both sides of the chain, fastening link on a support ring to serve as a toothed ring
- Special inverted tooth chains with extra parts, e.g. massive driver blocks for cycle lines, welded disks for precise plate conveyors, or plastic or ceramic components for the bearingsurface

There is a large selection of existing special link plates. Additional forms can be produced quickly through laser cutting.
The right sprockets
Sprocket and tooth chain must be a perfect team

Task-specific inverted tooth conveyor chain versions are just as multifaceted as the proper sprockets. Optimal adaptation of all relevant dimensions and profiles to one another results in an accurate toothing, the first step to trouble-free continuous operation.

Whereas regular and extended pitch share an identical toothing profile, the low model has its own toothing profile. Sprockets are manufactured according to customer’s visions as far as technically possible. Tooth formation is adjusted to the guide version of the selected inverted tooth chain. When ordering replacement sprockets for existing external guide chains, please indicate the type and current toothing width.

To ensure constant belt height at transfer points, we also offer customer-specific solutions for return rollers without toothing where the external diameter including the chain corresponds to the sprockets currently in use. The chain can then be guided with hardened flanged wheels mounted on both sides. The total width of the inverted tooth chain must be accounted for. When used in laser-welded inverted tooth conveyor chains, return rollers with flanged wheels enjoy a much longer service life thanks to reduced wear.

Usually, C45 steel sprockets with hardened tooth flanks are supplied. Although other materials are possible, steel wheels are preferred for up to 30 teeth.

The reference diameter helps determine the correct external diameter of the sprocket with an attached chain in new condition:

- **Pitch diameter:**
 \[d_o = \frac{p}{\sin(180^\circ/{2z})} \]

- **Max. diameter with inverted tooth chain:**
 \[D_{\text{max}} = d_o + X \]

- **Recommended slide rail height:**
 \[h_{\text{slide}} = \frac{(d_o - 1.02)}{2} - \sigma \]

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Design</th>
<th>Faktor X</th>
<th>Value o</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2"</td>
<td>Regular</td>
<td>12.8</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td>Extended</td>
<td>12.8</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>11.2</td>
<td>4.5</td>
</tr>
<tr>
<td>1"</td>
<td>Regular</td>
<td>22.4</td>
<td>13.1</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
<td>13.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Slide rail height
Raising the rail surface by 2% of the sprocket diameter reduces contact pressure on the teeth and promotes quiet running.
Sprocket dimensions

For 1/2" wheels, different tooth widths apply to the two chain pivot constructions. Sprocket orders must specify whether inverted tooth chains will use a one- or two-pin system. Chain width determines sprocket width. Narrower sprocket widths are possible in special cases. Extremely wide chains may make use of a series of narrower disks positioned side by side at a distance.

Sprockets with proper toothing are a pre-requisite for the chain’s reliable functioning and long service life. The guarantee for inverted tooth chains does not apply to wheels of foreign make.

Guide groove and profile

<table>
<thead>
<tr>
<th>Pitch Design</th>
<th>1/2” KT</th>
<th>1” LCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>f</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>h</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>m</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch Design</th>
<th>Minimum amount of teeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2”</td>
<td>Regular</td>
</tr>
<tr>
<td></td>
<td>Extended</td>
</tr>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>1”</td>
<td>Regular</td>
</tr>
<tr>
<td></td>
<td>LCC</td>
</tr>
</tbody>
</table>

Measurements are in mm – Intermediate values should be interpolated.

Sprockets
Guiling, installation and maintenance
Perfectly guided, correctly tensioned und well lubricated: how you guarantee best reliability

Guiding the inverted tooth chain
Chain guiding takes place on both sides through wedge steel with feed slopes or in a U-shape in commercially available plastic profiles. The right material together with the slide surface is selected according to the intended use. The returning chain section must also be supported in case of intervals of one meter or more between axles, e.g. with sliding surfaces in concave profiles, separate slide rails or supporting rollers. The diameter of these rollers is determined by the type of inverted tooth chain. The correct selection of sliding material substantially increases reliable operation and service life of the inverted tooth chain. Standard profiles for conveyor belts may also be used.

Laser-welded inverted tooth conveyor chains from Renold feature the best lateral guide qualities.

The following minimum requirements apply to inverted tooth chains with 1/2” pitch, depending on the type of closure:

<table>
<thead>
<tr>
<th>Closure type</th>
<th>h</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser-welded</td>
<td>Link height *)</td>
<td>b + 1 mm</td>
</tr>
<tr>
<td>With rivet disk</td>
<td>a) 2 mm</td>
<td>a) b + 1 mm</td>
</tr>
<tr>
<td>or directly riveted</td>
<td>b) Link height *)</td>
<td>b) b + 1 mm</td>
</tr>
</tbody>
</table>

*) This requires the use of rivet closures. A high lateral guide without laser-welded closure generally implies much higher side wear on the slide rails.
The interlocking drive of inverted tooth conveyor chains eliminates the need for pre-tensioning

The drive has to be placed in the direction of traction. Retensioning usually occurs by adjusting the distance between the axles. If the end of the re-tensioning stretch has been reached, the inverted tooth chain can easily be shortened. Additionally, a self-tensioning effect (due to the chain’s own weight) can be expected when a one-meter-long section of the lower belt sags from the drive wheel.

As inverted tooth chain drives do not possess much bilateral flexibility, they should only be bent gently over the backs. Depending on the pitch and version, the slack span can be returned with appropriate bending radii (see chart).

Belts with S-shaped wraps, e.g. with a center drive, are available with bilaterally flexible inverted tooth chains. Reverse operation is possible in a pre-tensioned inverted tooth chain; however, this requires a special layout.

Lubrication

Additional lubrication should follow in longer intervals based on use and intensity. The lubricant should be applied to the chain teeth from the inside. Also automatic stand-alone lubrication devices could be used for minimized lubrication.

Inverted tooth chains are delivered only corrosion-proof. A thorough initial lubrication must take place before installation.
Assembly and shortening
Notes for easy assembly and the right shortening of tooth chains

Use only even link numbers. Otherwise, lateral offsets may develop at the junction between both ends. Normal riveted inverted tooth chains are closed with rivets and may be opened at any point by grinding off a rivet head. A new rivet closure is needed to reseal the opening. The following operation applies to inverted tooth chains with direct riveting or laser-welding.

Closing
- Join both ends and connect them with the accompanying rivet closure
- For laser-welded inverted tooth chains, grind off any protruding rivet head to the outer link

Shortening
Fig. 1:
- Force open the weld by hitting the pin’s front side
 (if possible, offset on both sides to allow each support pin to remain connected to a welding link)

Fig. 2:
- Remove the first support pin with the connected welding link and replace it with the rivet closure support pin
- The pivot pin need not be changed
- Remove the second support pin likewise with the welding link
- Rivet

Fig. 3:
- Measure off the necessary length and disconnect both welds on one side (blasting the link on its front)

Fig. 4:
- Remove welding link with both rolling pivot joints
- Remove individual parts and single links as well as a chain section

Fig. 5:
- Push the now inversely arranged ends of the inverted tooth chain into one another as to make the holes congruent

Fig. 6:
- Insert rivet closure (first the support pin with the disk, then the pivot pin)
- Rivet and abrade both rivet heads until they are flush with the outer surface of the welding link
Features of inverted tooth chains in a one-pin-system (Type KT)

A weakened structure due to single closures combined with an omission of external link plates is especially undesirable in narrow widths. Therefore, a double-riveted closure is supplied with these versions (e.g. KT 312A).

A pin with an attached but unriveted disk prevents the outer link plates from falling off. The double-riveted closure consists of three individual parts, as shown on the right.

The shortening resembles the laser-welded version, with opening according to Fig. 3. Where necessary, two lower ends must be laid against one another and separated by equal distances. Loose link plates then fill those spaces. The double-riveted closure is sandwiched in and riveted after insertion of the corresponding outer link plate.

Auxiliary tools

In order to facilitate the opening of the laser-welded inverted tooth chain, we have developed a tool to clamp the inverted tooth chain and increase the clearance between the link plates on the side to be opened. Thus, a link plate may be removed with a common screwdriver.
Innovative and accurate
Customer service, engineering, design – Advantages you can dig your teeth into

Using the latest technical methods and field-specific knowledge needed for the customers’ tasks, we calculate and develop the most suitable configuration. Inverted tooth chains and sprockets are perfectly adapted to each other.
Inverted tooth chains for drives

We are not only conveying, we are also driving

These were designed for the transmission of great traction, torque, and power, even at high rotations and speeds up to 50 m/s as well as slower-running machines at full capacity. In all of these cases, service life and functional reliability are indispensable.

These factors are met through the following pre-requisites

- Friction-free rolling pivot joints made from case hardened steel and exhibiting a high degree of efficiency, resistance to wear, and durability
- Inverted tooth chain link plates with FE-optimized outlines made from high-resistance heat-treated steel
- Sprockets featuring hardened involute-toothing for smooth, impact-free meshing

When compared to other wrap drives, steel pivot drives, and belt drives, the advantages shine through

- Optimum use of space due to high power density
- The proverbial quiet running: in a word: silent chain
- Extremely long service life
- Very low lubrication requirements
- High temperature tolerance
The data specified only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

RTC/R418016532/2016-03/EN Subject to change. Printed in Germany. © Renold GmbH.

This document, as well as the data, specifications, and other information set forth in it, are the exclusive property of Renold. It may not be reproduced or given to third parties without its consent.